10B Class Work

This is a classwork given to 10B students on March 11. Since a lot of you may not have had the chance to work on the given assignment and since it wasn't given to the other sections, I will be posting the questions and solutions on here.

Questions

Problem 1 A photographic flash unit has a 100µF capacitor which is charged up by a small 22.5V battery. How much energy may be discharged into the flash bulb?

Explanation. Recall that the energy stored in a capacitor is given by

 $E = \frac{1}{2}QV$, But, we know that Q = CV, then putting CV in place of Q, we get
(1)

$$E = \frac{1}{2}CV^2 \tag{2}$$

Therefore, plugging our given values into equation (2), we get:

$$E = \frac{1}{2} 100 \mu F(22.5V)^2 \tag{3}$$

$$E = 25312.5\mu J \tag{4}$$

$$E = 0.0253J$$
 (5)

Problem 2 Find an expression for the resultant capacitance of 4 equal capacitance capacitors connected in series.

Explanation. To do this problem, recall that in a series circuit, the reciprocal of the net capacitance is the reciprocal sum of each capacitance, that is

$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \frac{1}{C_4}$$
(6)

We know that $C_1 = C_2 = C_3 = C_4 = C$, Therefore, our equation becomes (7)

$$\frac{1}{C_T} = \frac{1}{C} + \frac{1}{C} + \frac{1}{C} + \frac{1}{C}$$
(8)

Learning outcomes:

Author(s): Aaron Girmaye Kebede

Then, we add the fractions as we normally would (Since they all have the same denominator, we do the following)

$$\frac{1}{C_T} = \frac{4}{C} \quad Then, we cross multiply to get C_T \tag{9}$$

$$C_T = \frac{C}{4} \tag{10}$$

Problem 3 You want to make a 5.0µF capacitor, what area plates are required if the permissivity of the dielectric between the plates is $\varepsilon = 7.1 X \, 10^{-11}$ and the separation between them is 0.4mm.

Explanation. To do this problem, recall that the capacitance of a circuit is affected by the Area of the plates(A), the separation between them(d) and the type of the dielectric in them. This relationship is given by:

$$C = \frac{\varepsilon A}{d} \text{ Rearranging the terms, we get}$$
(11)

 $A = \frac{Cd}{\varepsilon}$ Then, we put the given terms and evaluate the equation (12)

$$A = \frac{(5.0\mu F)(0.4\text{mm})}{7.1X10^{-11}\frac{F}{m}}$$
(13)

To simplify the above math, convert everything to SI units, we then get

$$A = 2817m^2 \tag{14}$$

Problem 4 Find the relative permissivity of the dielectric above.

Explanation. To do this problem, we have to understand the concept of relative permissivity. Relative permissivity or dielectric constant is the ratio between the permissivity of a dielectric(ε) to the permissivity of free space(ε_0). Mathematically, it is given as follows.

$$\kappa = \frac{\varepsilon}{\varepsilon_0} \quad \text{Then, evaluate using the values}$$
(15)

$$\kappa = \frac{7.1X10^{-11} \frac{F}{m}}{8.85X10^{-11} \frac{F}{m}} \tag{16}$$

$$\kappa = 8.02 \tag{17}$$

Problem 5 If there are **n** number of equal-capacitance capacitors, what is the effective capacitance when the capacitors are connected in series and in parallel?

Explanation. When the capacitors are connected in series, we know that the reciprocal of the effective capacitance is the sum of the reciprocal of each capacitance (Refer to question 4)

$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \frac{1}{C_4} + \dots + \frac{1}{C_n}$$
(18)

We know that

$$\frac{1}{C_T} = \frac{1}{C} + \frac{1}{C} + \frac{1}{C} + \frac{1}{C} + \dots + \frac{1}{C}$$
(19)

We know that $C_1 = C_2 = C_3 = C_4 \dots = \dots = C_n = C$, Therefore, our equation becomes
(20)

Since we have n number of capacitors, our equation becomes:

$$\frac{1}{C_T} = \frac{n}{C} \tag{21}$$

$$C_T = \frac{C}{n}$$
 When you cross multiply, you get the C_T term alone (22)

To visualize this problem, do the problem when there are 2,3,4, and 5 capacitors in a circuit. Each time, you will find that the net capacitance will be $\frac{C}{2}$, $\frac{C}{3}$, $\frac{C}{4}$, and $\frac{C}{5}$ respectively. See a pattern?

Explanation. When the capacitors are connected in parallel, we know that the effective capacitance is the algebraic sum of each capacitance. That is,

$$C_T = C_1 + C_2 + C_3 + C_4 + \dots + C_n \tag{23}$$

Since
$$C_1 = C_2 = C_3 = C_4 = \dots = C_n$$
, (24)

 $C_T = C + C + C + C + \dots + C$ Since we have n number of these capacitors, we will have C_T become

$$C_T = nC \tag{25}$$

To visualize this problem, do the problem when there are 2,3,4, and 5 capacitors in a circuit. Each time, you will find that the net capacitance will be 2C, 3C, 4C, and 5C respectively. See a pattern?